Got it

Why Quantum Computing May Be the Next Step on the Big Data Highway

Latest reply: Apr 2, 2022 02:47:56 178 1 2 0 0

Hello everyone,

I must say first working quantum computer will be revolutionary in the world of technology , we all know that.I believe, for us to have some basic understanding of the technology to understand where quantum computing may be taking us


The first working electronic computer was the Electronic Numerical Integrator and Computer, more commonly known as ENIAC. It was developed at the University of Pennsylvania’s Moore School of Engineering under funding by the U.S. Army to calculate gunnery trajectories in World War II. (In addition to being an engineering marvel, the ENIAC blazed the trail for many major IT projects in the years since, but it was too late for World War II, which ended before the computer was completed.)

The heart of ENIAC’s processing capability was vacuum tubes – 17,468 of them. Because a vacuum tube has only two states – off and on (also referred to as 0/1) – computers adopted binary arithmetic, rather than decimal arithmetic, where values go from 0 to 9. Each of these individual representations is called a bit, short for "binary digit." (To learn more about the history of the ENIAC, see The Women of ENIAC: Programming Pioneers.)

In the time since the ENIAC "went live" in 1946 and all through these generations, the underlying use of the vacuum tube-based binary arithmetic has remained in place. Quantum computing represents a radical breakaway from this methodology


Quantum Computing: The Big Break

Quantum computers harness the power of atoms and molecules to process and perform memory tasks at a much faster speed than a silicon-based computer ... at least theoretically. Although there are some basic quantum computers capable of performing specific calculations, a practical model is likely still several years away. But if they do emerge, they could drastically change the processing power of computers.

As a result of this power, quantum computing has the power to greatly improve big data processing because, at least theoretically, it should excel at the massively parallel processing of unstructured data.

Computers have kept on with binary processing for one reason: There had really been no reason to tinker with something that worked. After all, computer processing speeds have been doubling every 18 months to two years. In 1965,  Gordon Moore wrote a paper that detailed what became known as Moore’s law, in which he stated that the density of processors would double every two years, resulting in a doubling of processing speed. Although he had written that he predicted this trend to last for 10 years, it has – remarkably – continued to the present day. (There have been a few computing pioneers who have broken the binary mold.

Making Sense of Big Data

Increasingly, big data exploits are finding that despite all the gains in processing power we've made, it just isn't enough. If we are going to be able to make sense out of this tremendous amount of data that we are accumulating, we are going to need new ways of analyzing it and presenting it as well as faster computers to process it. Quantum computers may not be ready for action, but experts have been watching their every progression as the next level of computer processing power. We can't say for certain, but the next big change in computer technology could be a real departure from the silicon chips that have carried us along thus far.

  • x
  • convention:

Admin Created Apr 2, 2022 02:47:56

Thanks for your sharing!
View more
  • x
  • convention:


You need to log in to comment to the post Login | Register

Notice: To protect the legitimate rights and interests of you, the community, and third parties, do not release content that may bring legal risks to all parties, including but are not limited to the following:
  • Politically sensitive content
  • Content concerning pornography, gambling, and drug abuse
  • Content that may disclose or infringe upon others ' commercial secrets, intellectual properties, including trade marks, copyrights, and patents, and personal privacy
Do not share your account and password with others. All operations performed using your account will be regarded as your own actions and all consequences arising therefrom will be borne by you. For details, see " User Agreement."

My Followers

Login and enjoy all the member benefits


Are you sure to block this user?
Users on your blacklist cannot comment on your post,cannot mention you, cannot send you private messages.
Please bind your phone number to obtain invitation bonus.
Information Protection Guide
Thanks for using Huawei Enterprise Support Community! We will help you learn how we collect, use, store and share your personal information and the rights you have in accordance with Privacy Policy and User Agreement.