Load Balancer

68 0 2 0
Load balancing is a technique used to distribute workloads uniformly across servers or other compute resources to optimize network efficiency, reliability and capacity. Load balancing is performed by an appliance -- either physical or virtual -- that identifies in real time which server in a pool can best meet a given client request, while ensuring heavy network traffic doesn't unduly overwhelm a single server.
n addition to maximizing network capacity and performance, load balancing provides failover. If one server fails, a load balancer immediately redirects its workloads to a backup server, thus mitigating the impact on end users.
Load balancing is usually categorized as supporting either Layer 4 or Layer 7. Layer 4 load balancers distribute traffic based on transport data, such as IP addresses and Transmission Control Protocol (TCP) port numbers. Layer 7 load-balancing devices make routing decisions based on application-level characteristics that include HTTP header information and the actual contents of the message, such as URLs and cookies. Layer 7 load balancers are more common, but Layer 4 load balancers remain popular, particularly in edge deployments.
How load balancing works
Load balancers handle incoming requests from users for information and other services. They sit between the servers that handle those requests and the internet. Once a request is received, the load balancer first determines which server in a pool is available and online and then routes the request to that server. During times of heavy loads, a load balancer can dynamically add servers in response to spikes in traffic. Conversely, they can drop servers if demand is low.
A load balancer can be a physical appliance, a software instance or a combination of both. Traditionally, vendors have loaded proprietary software onto dedicated hardware and sold them to users as stand-alone appliances -- usually in pairs, to provide failover if one goes down. Growing networks require purchasing additional and/or bigger appliances.
In contrast, software load balancing runs on virtual machines (VMs) or white box servers, most likely as a function of an application delivery controller (ADC). ADCs typically offer additional features, like caching, compression, traffic shaping, etc. Popular in cloud environments, virtual load balancing can offer a high degree of flexibility -- for example, enabling users to automatically scale up or down to mirror traffic spikes or decreased network activity.

Source: https://searchnetworking.techtarget.com/definition/load-balancing
  • x
  • convention:


You need to log in to reply to the post Login | Register

Notice Notice: To protect the legitimate rights and interests of you, the community, and third parties, do not release content that may bring legal risks to all parties, including but are not limited to the following:
  • Politically sensitive content
  • Content concerning pornography, gambling, and drug abuse
  • Content that may disclose or infringe upon others ' commercial secrets, intellectual properties, including trade marks, copyrights, and patents, and personal privacy
Do not share your account and password with others. All operations performed using your account will be regarded as your own actions and all consequences arising therefrom will be borne by you. For details, see " Privacy."
If the attachment button is not available, update the Adobe Flash Player to the latest version!
Login and enjoy all the member benefits

Login and enjoy all the member benefits