Dear Members,
Supercomputing is a key technology that can transform society and open the door to humanity’s next stage of technological evolution. Many nations are prioritizing supercomputing R&D, including the US, Japan, the EU, Russia, and China. China, for example, has 188 entries on the June 2021 release of the TOP500 most powerful supercomputers, with Tianhe-2A ranking 7th. Before that, Tianhe 2, Tianhe 3, and then Sunway Taihu Light topped the list ten consecutive times.
Nevertheless, new technologies like cloud computing, big data, artificial intelligence, and blockchain have drawn attention away from supercomputing. And alongside a limited application ecosystem coupled with an insufficiently diverse machine-hour supercomputing service model, China’s supercomputing sector has much room to develop.
Seeing its broader value in terms of socioeconomic progress, an increasing number of provinces and cities in China are establishing supercomputing centers and deploying next-gen supercomputing systems. China currently runs 10 national-level supercomputing centers in major cities, including Tianjin, Shenzhen, Guangzhou, and Xi'an, with many more planned.
Five trends
To transform supercomputing centers from computing service providers into integrated data value providers, China is prioritizing five supercomputing trends: diversified computing, all-optical networks, intensified data, containerized applications, and converged architecture.
Diversified computing is becoming mainstream. Traditional high-performance computing (HPC) systems use CPUs for double-precision floating-point computing, while emerging supercomputing systems use CPUs, GPUs, and FPGAs for more powerful parallel computing. Today’s industry in China is stepping up R&D and the deployment of homegrown microprocessors and accelerators, improving the efficiency of diversified heterogeneous computing and improving the efficiency of diversified hybrid applications.