Example for Configuring SEP and RRPP on a Network

49 0 0 0

Overview

Generally, redundant links are used to provide link backup and enhance network reliability. The use of redundant links, however, may produce loops. Loops cause infinite looping of packets, leading to broadcast storms and MAC address table instability. As a result, the communication quality deteriorates, and communication services may be interrupted. To block redundant links and ensure that the blocked links can be restored immediately to resume communication when a link fault occurs on a ring network, you can deploy SEP and RRPP on the ring network.

Configuration Notes

This example applies to all versions of all S series switches.

Networking Requirements

In Figure 6-33, Layer 2 switching devices at access and aggregation layers constitute a ring network and connect to the core layer. The aggregation layer uses RRPP to eliminate redundant links, and the access layer uses SEP.

  • When there is no faulty link on the ring network, SEP can eliminate loops on the Ethernet network.
  • When a link fails on the ring network, SEP can quickly restore communication between nodes in the ring.
  • The topology change notification function is configured on an edge device in a SEP segment so that devices on the upper-layer network can promptly detect topology changes on the lower-layer network.

    After receiving a topology change notification from a lower-layer network, a device on an upper-layer network sends a TC packet to instruct other devices to delete original MAC addresses and learn new MAC addresses. This ensures nonstop traffic forwarding.

Figure 6-33  SEP and RRPP networking 
imgDownload?uuid=b3d5a094a0704563b7de1bc
imgDownload?uuid=fea34ec5365043dc8281b2e NOTE:

In this example, NPE1 and NPE2 use NE40Es running V600R008C00.

To ensure reliability of the entire network, you are advised to configure the following functions:
  • VRRP group between NPE1 and NPE2 to improve device-level reliability

  • BFD session between NPE1 and NPE2 to detect the link status and therefore implement fast switchover in the VRRP group

Configuration Roadmap

The configuration roadmap is as follows:

  1. Configure basic SEP functions.

    1. Configure SEP segment 1 on PE1, PE2, and LSW1 to LSW3 and configure VLAN 10 as the control VLAN of SEP segment 1.

    2. Add PE1, PE2, and LSW1 to LSW3 to SEP segment and configure interface roles on edge devices (PE1 and PE2) of the SEP segment.

    3. On the device where the primary edge interface is located, specify the mode in which an interface is blocked.

    4. Configure a SEP preemption mode to ensure that the specified blocked interface takes effect when the fault is rectified.

    5. Configure the topology change notification function so that the upper-layer network running RRPP can be notified of topology changes in the SEP segment.

  2. Configure basic RRPP functions.

    1. Add PE1 to PE4 to RRPP domain 1, configure VLAN 5 as the control VLAN on PE1 to PE4, and configure the protected VLAN.

    2. Configure PE1 as the master node and PE2 to PE4 as the transit nodes on the major ring, and configure primary and secondary interfaces of the master node.

    3. Create VLANs on PE1 to PE4 and add interfaces on the RRPP ring to the VLANs.

  3. Set up a single-hop BFD session between NPE1 and NPE2 to detect the status of the interfaces configured with VRRP. Then, report the detection result to VRRP to complete VRRP fast switching.

  4. Configure VRRP.

    1. Create VRRP group 1 on GE 1/0/1 of NPE1, and set a higher VRRP priority for NPE1 to ensure that NPE1 functions as the master.

    2. Create VRRP group 1 in the view of GE 1/0/1 interface of NPE2, and allow NPE2 to use the default VRRP priority.

    3. Bind a BFD session to VRRP group 1.

  5. Configure Layer 2 forwarding on the CE, LSW1 to LSW3, and PE1 to PE4.

imgDownload?uuid=fea34ec5365043dc8281b2e NOTE:

PEs are aggregation switches, LSWs are access switches, and CEs are user-side switches.

Procedure

  1. Configure basic SEP functions.

    1. Configure SEP segment 1 and configure VLAN 10 as the control VLAN of SEP segment 1.

      # Configure aggregation switch PE1.

      <HUAWEI> system-view[HUAWEI] sysname PE1[PE1] sep segment 1 //Create SEP segment 1.[PE1-sep-segment1] control-vlan 10 //Configure VLAN 10 as the control VLAN of SEP segment 1.[PE1-sep-segment1] protected-instance all //Configure all protected instances of SEP segment 1.[PE1-sep-segment1] quit

      # Configure aggregation switch PE2.

      <HUAWEI> system-view[HUAWEI] sysname PE2[PE2] sep segment 1 //Create SEP segment 1.[PE2-sep-segment1] control-vlan 10 //Configure VLAN 10 as the control VLAN of SEP segment 1.[PE2-sep-segment1] protected-instance all //Configure all protected instances of SEP segment 1.[PE2-sep-segment1] quit
      # Configure access switch LSW1.
      <HUAWEI> system-view[HUAWEI] sysname LSW1[LSW1] sep segment 1 //Create SEP segment 1.[LSW1-sep-segment1] control-vlan 10 //Configure VLAN 10 as the control VLAN of SEP segment 1.[LSW1-sep-segment1] protected-instance all //Configure all protected instances of SEP segment 1.[LSW1-sep-segment1] quit
      # Configure access switch LSW2.
      <HUAWEI> system-view[HUAWEI] sysname LSW2[LSW2] sep segment 1 //Create SEP segment 1.[LSW2-sep-segment1] control-vlan 10 //Configure VLAN 10 as the control VLAN of SEP segment 1.[LSW2-sep-segment1] protected-instance all //Configure all protected instances of SEP segment 1.[LSW2-sep-segment1] quit
      # Configure access switch LSW3.
      <HUAWEI> system-view[HUAWEI] sysname LSW3[LSW3] sep segment 1 //Create SEP segment 1.[LSW3-sep-segment1] control-vlan 10 //Configure VLAN 10 as the control VLAN of SEP segment 1.[LSW3-sep-segment1] protected-instance all //Configure all protected instances of SEP segment 1.[LSW3-sep-segment1] quit
      imgDownload?uuid=fea34ec5365043dc8281b2e NOTE:
      • The control VLAN must be a VLAN that has not been created or used. However, the command for creating a common VLAN is automatically displayed in the configuration file after the control VLAN is created.

      • Each SEP segment must have a control VLAN. After an interface is added to a SEP segment that has a control VLAN, the interface is automatically added to the control VLAN.

    2. Add aggregation switch PE1, aggregation switch PE2, and access switch LSW1 to LSW3 to SEP segment 1 and configure interface roles.

      imgDownload?uuid=fea34ec5365043dc8281b2e NOTE:

      By default, STP is enabled on Layer 2 interfaces. Before adding an interface to a SEP segment, disable STP on the interface.

      # Configure aggregation switch PE1.

      [PE1] interface gigabitethernet 1/0/1[PE1-GigabitEthernet1/0/1] port link-type trunk[PE1-GigabitEthernet1/0/1] stp disable //Disable STP.[PE1-GigabitEthernet1/0/1] sep segment 1 edge primary //Configure the interface as the primary edge interface and add it to SEP segment 1.[PE1-GigabitEthernet1/0/1] quit

      # Configure access switch LSW1.

      [LSW1] interface gigabitethernet 1/0/1[LSW1-GigabitEthernet1/0/1] port link-type trunk[LSW1-GigabitEthernet1/0/1] stp disable //Disable STP.[LSW1-GigabitEthernet1/0/1] sep segment 1 //Add the interface to SEP segment 1.[LSW1-GigabitEthernet1/0/1] quit[LSW1] interface gigabitethernet 1/0/2[LSW1-GigabitEthernet1/0/2] port link-type trunk[LSW1-GigabitEthernet1/0/2] stp disable //Disable STP.[LSW1-GigabitEthernet1/0/2] sep segment 1 //Add the interface to SEP segment 1.[LSW1-GigabitEthernet1/0/2] quit

      # Configure access switch LSW2.

      [LSW2] interface gigabitethernet 1/0/1[LSW2-GigabitEthernet1/0/1] port link-type trunk[LSW2-GigabitEthernet1/0/1] stp disable //Disable STP.[LSW2-GigabitEthernet1/0/1] sep segment 1 //Add the interface to SEP segment 1.[LSW2-GigabitEthernet1/0/1] quit[LSW2] interface gigabitethernet 1/0/2[LSW2-GigabitEthernet1/0/2] port link-type trunk[LSW2-GigabitEthernet1/0/2] stp disable //Disable STP.[LSW2-GigabitEthernet1/0/2] sep segment 1 //Add the interface to SEP segment 1.[LSW2-GigabitEthernet1/0/2] quit

      # Configure access switch LSW3.

      [LSW3] interface gigabitethernet 1/0/1[LSW3-GigabitEthernet1/0/1] port link-type trunk[LSW3-GigabitEthernet1/0/1] stp disable //Disable STP.[LSW3-GigabitEthernet1/0/1] sep segment 1 //Add the interface to SEP segment 1.[LSW3-GigabitEthernet1/0/1] quit[LSW3] interface gigabitethernet 1/0/2[LSW3-GigabitEthernet1/0/2] port link-type trunk[LSW3-GigabitEthernet1/0/2] stp disable //Disable STP.[LSW3-GigabitEthernet1/0/2] sep segment 1 //Add the interface to SEP segment 1.[LSW3-GigabitEthernet1/0/2] quit

      # Configure aggregation switch PE2.

      [PE2] interface gigabitethernet 1/0/1[PE2-GigabitEthernet1/0/1] port link-type trunk[PE2-GigabitEthernet1/0/1] stp disable //Disable STP.[PE2-GigabitEthernet1/0/1] sep segment 1 edge secondary //Configure the interface as the secondary edge interface and add it to SEP segment 1.[PE2-GigabitEthernet1/0/1] quit

      After the configuration is complete, run the display sep topology command on aggregation switch PE1 to check the topology of the SEP segment. The command output shows that the blocked interface is one of the two interfaces on the link that last completes neighbor negotiation.

      [PE1] display sep topologySEP segment 1
      -------------------------------------------------------------------------
      System Name          Port Name        Port Role       Port Status     Hop
      -------------------------------------------------------------------------
      PE1                  GE1/0/1          primary         forwarding      1
      LSW1                 GE1/0/1          common          forwarding      2
      LSW1                 GE1/0/2          common          forwarding      3
      LSW3                 GE1/0/2          common          forwarding      4
      LSW3                 GE1/0/1          common          forwarding      5
      LSW2                 GE1/0/2          common          forwarding      6
      LSW2                 GE1/0/1          common          forwarding      7
      PE2                  GE1/0/1          secondary       discarding      8
    3. Specify a blocked interface.

      # In SEP segment 1, set the mode of blocking an interface on aggregation switch PE1 where the primary edge interface is located to block the interface in the middle of the SEP segment.

      [PE1] sep segment 1[PE1-sep-segment1] block port middle 
    4. Configure a preemption mode.

      # In SEP segment 1, configure the manual preemption mode on aggregation switch PE1 where the primary edge interface is located.

      [PE1-sep-segment1] preempt manual
    5. Configure the SEP topology change notification function.

      Configure devices in SEP segment 1 to notify the RRPP network of topology changes.

      # Configure aggregation switch PE1.

      [PE1-sep-segment1] tc-notify rrpp[PE1-sep-segment1] quit

      # Configure aggregation switch PE2.

      [PE2] sep segment 1[PE2-sep-segment1] tc-notify rrpp[PE2-sep-segment1] quit

    After the configuration is complete, perform the following operations to verify the configuration. Aggregation switch PE1 is used as an example.

    • Run the display sep topology command on aggregation switch PE1 to check the topology of the SEP segment.

      The command output shows that GE1/0/2 of access switch LSW3 is in discarding state and other interfaces are in forwarding state.

      [PE1] display sep topologySEP segment 1
      -------------------------------------------------------------------------
      System Name          Port Name        Port Role       Port Status     Hop
      -------------------------------------------------------------------------
      PE1                  GE1/0/1          primary         forwarding      1
      LSW1                 GE1/0/1          common          forwarding      2
      LSW1                 GE1/0/2          common          forwarding      3
      LSW3                 GE1/0/2          common          discarding      4
      LSW3                 GE1/0/1          common          forwarding      5
      LSW2                 GE1/0/2          common          forwarding      6
      LSW2                 GE1/0/1          common          forwarding      7
      PE2                  GE1/0/1          secondary       forwarding      8
    • Run the display sep interface verbose command on aggregation switch PE1 to check detailed information about interfaces in the SEP segment.

      [PE1] display sep interface verboseSEP segment 1
      Control-vlan             :10
      Preempt Delay Timer      :0
      TC-Notify Propagate to :rrpp----------------------------------------------------------------
      Interface              :GE1/0/1
      Port Role              :Config = primary / Active =  primary
      Port Priority          :64
      Port Status            :forwarding
      Neighbor Status        :up
      Neighbor Port          :LSW1 - GE1/0/1 (00e0-0829-7c00.0000)
      NBR TLV             rx :2124             tx :2126
      LSP INFO TLV        rx :2939             tx :135
      LSP ACK TLV         rx :113              tx :768
      PREEMPT REQ TLV     rx :0                tx :3
      PREEMPT ACK TLV     rx :3                tx :0
      TC Notify           rx :5                tx :3
      EPA                 rx :363              tx :397

  2. Configure basic RRPP functions.

    1. Add aggregation switch PE1 to PE4 to RRPP domain 1, configure VLAN 5 as the control VLAN on aggregation switch PE1 to PE4, and configure the protected VLAN.

      # Configure aggregation switch PE1.

      [PE1] stp region-configuration //Enter the MST region view.[PE1-mst-region] instance 1 vlan 5 6 100 //Map VLAN 5, VLAN 6, and VLAN 100 to MSTI 1.[PE1-mst-region] active region-configuration //Activate MST region configuration.[PE1-mst-region] quit[PE1] rrpp domain 1 //Create RRPP domain 1.[PE1-rrpp-domain-region1] control-vlan 5 //Configure VLAN 5 as the control VLAN of RRPP domain 1.[PE1-rrpp-domain-region1] protected-vlan reference-instance 1 //Configure the protected VLAN in protected instance 1.

      # Configure aggregation switch PE2.

      [PE2] stp region-configuration //Enter the MST region view.[PE2-mst-region] instance 1 vlan 5 6 100 //Map VLAN 5, VLAN 6, and VLAN 100 to MSTI 1.[PE2-mst-region] active region-configuration //Activate MST region configuration.[PE2-mst-region] quit[PE2] rrpp domain 1 //Create RRPP domain 1.[PE2-rrpp-domain-region1] control-vlan 5 //Configure VLAN 5 as the control VLAN of RRPP domain 1.[PE2-rrpp-domain-region1] protected-vlan reference-instance 1 //Configure the protected VLAN in protected instance 1.

      # Configure aggregation switch PE3.

      [PE3] stp region-configuration //Enter the MST region view.[PE3-mst-region] instance 1 vlan 5 6 100 //Map VLAN 5, VLAN 6, and VLAN 100 to MSTI 1.[PE3-mst-region] active region-configuration //Activate MST region configuration.[PE3-mst-region] quit[PE3] rrpp domain 1 //Create RRPP domain 1.[PE3-rrpp-domain-region1] control-vlan 5 //Configure VLAN 5 as the control VLAN of RRPP domain 1.[PE3-rrpp-domain-region1] protected-vlan reference-instance 1 //Configure the protected VLAN in protected instance 1.

      # Configure aggregation switch PE4.

      [PE4] stp region-configuration //Enter the MST region view.[PE4-mst-region] instance 1 vlan 5 6 100 //Map VLAN 5, VLAN 6, and VLAN 100 to MSTI 1.[PE4-mst-region] active region-configuration //Activate MST region configuration.[PE4-mst-region] quit[PE4] rrpp domain 1 //Create RRPP domain 1.[PE4-rrpp-domain-region1] control-vlan 5 //Configure VLAN 5 as the control VLAN of RRPP domain 1.[PE4-rrpp-domain-region1] protected-vlan reference-instance 1 //Configure the protected VLAN in protected instance 1.
      imgDownload?uuid=fea34ec5365043dc8281b2e NOTE:

      The control VLAN must be a VLAN that has not been created or used. However, the command for creating a common VLAN is automatically displayed in the configuration file after the control VLAN is created.

    2. Create a VLAN and add interfaces on the ring network to the VLAN.

      # On aggregation switch PE1, create VLAN 100 and add GE1/0/1, GE1/0/2, and GE1/0/3 to VLAN 100.

      [PE1] vlan 100[PE1-vlan100] quit[PE1] interface gigabitethernet 1/0/1[PE1-GigabitEthernet1/0/1] stp disable //Disable STP.[PE1-GigabitEthernet1/0/1] port link-type trunk[PE1-GigabitEthernet1/0/1] port trunk allow-pass vlan 100[PE1-GigabitEthernet1/0/1] quit[PE1] interface gigabitethernet 1/0/2[PE1-GigabitEthernet1/0/2] stp disable //Disable STP.[PE1-GigabitEthernet1/0/2] port link-type trunk[PE1-GigabitEthernet1/0/2] port trunk allow-pass vlan 100[PE1-GigabitEthernet1/0/2] quit[PE1] interface gigabitethernet 1/0/3[PE1-GigabitEthernet1/0/3] stp disable //Disable STP.[PE1-GigabitEthernet1/0/3] port link-type trunk[PE1-GigabitEthernet1/0/3] port trunk allow-pass vlan 100[PE1-GigabitEthernet1/0/3] quit

      # On aggregation switch PE2, create VLAN 100 and add GE1/0/1, GE1/0/2, and GE1/0/3 to VLAN 100.

      [PE2] vlan 100[PE2-vlan100] quit[PE2] interface gigabitethernet 1/0/1[PE2-GigabitEthernet1/0/1] stp disable //Disable STP.[PE2-GigabitEthernet1/0/1] port link-type trunk[PE2-GigabitEthernet1/0/1] port trunk allow-pass vlan 100[PE2-GigabitEthernet1/0/1] quit[PE2] interface gigabitethernet 1/0/2[PE2-GigabitEthernet1/0/2] stp disable //Disable STP.[PE2-GigabitEthernet1/0/2] port link-type trunk[PE2-GigabitEthernet1/0/2] port trunk allow-pass vlan 100[PE2-GigabitEthernet1/0/2] quit[PE2] interface gigabitethernet 1/0/3[PE2-GigabitEthernet1/0/3] stp disable //Disable STP.[PE2-GigabitEthernet1/0/3] port link-type trunk[PE2-GigabitEthernet1/0/3] port trunk allow-pass vlan 100[PE2-GigabitEthernet1/0/3] quit

      # On aggregation switch PE3, create VLAN 100 and add GE1/0/1 and GE1/0/2 to VLAN 100.

      [PE3] vlan 100[PE3-vlan100] quit[PE3] interface gigabitethernet 1/0/1[PE3-GigabitEthernet1/0/1] stp disable //Disable STP.[PE3-GigabitEthernet1/0/1] port link-type trunk[PE3-GigabitEthernet1/0/1] port trunk allow-pass vlan 100[PE3-GigabitEthernet1/0/1] quit[PE3] interface gigabitethernet 1/0/2[PE3-GigabitEthernet1/0/2] stp disable //Disable STP.[PE3-GigabitEthernet1/0/2] port link-type trunk[PE3-GigabitEthernet1/0/2] port trunk allow-pass vlan 100[PE3-GigabitEthernet1/0/2] quit

      # On aggregation switch PE4, create VLAN 100 and add GE1/0/1 and GE1/0/2 to VLAN 100.

      [PE4] vlan 100[PE4-vlan100] quit[PE4] interface gigabitethernet 1/0/1[PE4-GigabitEthernet1/0/1] stp disable //Disable STP.[PE4-GigabitEthernet1/0/1] port link-type trunk[PE4-GigabitEthernet1/0/1] port trunk allow-pass vlan 100[PE4-GigabitEthernet1/0/1] quit[PE4] interface gigabitethernet 1/0/2[PE4-GigabitEthernet1/0/2] stp disable //Disable STP.[PE4-GigabitEthernet1/0/2] port link-type trunk[PE4-GigabitEthernet1/0/2] port trunk allow-pass vlan 100[PE4-GigabitEthernet1/0/2] quit
    3. Configure aggregation switch PE1 as the master node and aggregation switch PE2 to PE4 as the transit nodes on the major ring, and configure primary and secondary interfaces of the master node.

      # Configure aggregation switch PE1.

      [PE1] rrpp domain 1 //Enter the view of RRPP domain 1.[PE1-rrpp-domain-region1] ring 1 node-mode master primary-port gigabitethernet 1/0/2 secondary-port gigabitethernet 1/0/3 level 0 //Configure the master node on RRPP primary ring 1 in RRPP domain 1, and configure GE1/0/2 as the primary interface and GE1/0/3 as the secondary interface.[PE1-rrpp-domain-region1] ring 1 enable //Enable the RRPP ring.

      # Configure aggregation switch PE2.

      [PE2] rrpp domain 1 //Enter the view of RRPP domain 1.[PE2-rrpp-domain-region1] ring 1 node-mode transit primary-port gigabitethernet 1/0/2 secondary-port gigabitethernet 1/0/3 level 0 //Configure the transit node on RRPP primary ring 1 in RRPP domain 1, and configure GE1/0/2 as the primary interface and GE1/0/3 as the secondary interface.[PE2-rrpp-domain-region1] ring 1 enable //Enable the RRPP ring.

      # Configure aggregation switch PE3.

      [PE3] rrpp domain 1 //Enter the view of RRPP domain 1.[PE3-rrpp-domain-region1] ring 1 node-mode transit primary-port gigabitethernet 1/0/1 secondary-port gigabitethernet 1/0/2 level 0 //Configure the transit node on RRPP primary ring 1 in RRPP domain 1, and configure GE1/0/1 as the primary interface and GE1/0/2 as the secondary interface.[PE3-rrpp-domain-region1] ring 1 enable //Enable the RRPP ring.

      # Configure aggregation switch PE4.

      [PE4] rrpp domain 1 //Enter the view of RRPP domain 1.[PE4-rrpp-domain-region1] ring 1 node-mode transit primary-port gigabitethernet1/0/1 secondary-port gigabitethernet1/0/2 level 0 //Configure the transit node on RRPP primary ring 1 in RRPP domain 1, and configure GE1/0/1 as the primary interface and GE1/0/2 as the secondary interface.[PE4-rrpp-domain-region1] ring 1 enable //Enable the RRPP ring.
    4. Enable RRPP.

      # Configure aggregation switch PE1.

      [PE1] rrpp enable

      # Configure aggregation switch PE2.

      [PE2] rrpp enable

      # Configure aggregation switch PE3.

      [PE3] rrpp enable

      # Configure aggregation switch PE4.

      [PE4] rrpp enable
    After the configuration is complete, run the display rrpp brief or display rrpp verbose domain command. Aggregation switch PE1 is used as an example.
    [PE1] display rrpp briefAbbreviations for Switch Node Mode :
    M - Master , T - Transit , E - Edge , A - Assistant-Edge
    
    RRPP Protocol Status: EnableRRPP Working Mode: HW
    RRPP Linkup Delay Timer: 0 sec (0 sec default)
    Number of RRPP Domains: 1
    
    Domain Index   : 1
    Control VLAN   : major 5    sub 6
    Protected VLAN : Reference Instance 1
    Hello Timer    : 1 sec(default is 1 sec)  Fail Timer : 6 sec(default is 6 sec)
    
     Ring  Ring   Node  Primary/Common           Secondary/Edge           Is
     ID    Level  Mode  Port                     Port                     Enabled
     ----------------------------------------------------------------------------
     1     0      M     GigabitEthernet1/0/2     GigabitEthernet1/0/3    Yes

    According to the preceding information, RRPP is enabled on aggregation switch PE1. The major control VLAN is VLAN 5 and the sub-control VLAN is VLAN 6 in RRPP domain 1. VLANs mapping Instance1 are protected VLANs. Aggregation switch PE1 is the master node in ring 1. The primary interface is GE1/0/2 and the secondary interface is GE1/0/3.

    [PE1] display rrpp verbose domain 1Domain Index   : 1
    Control VLAN   : major 5    sub 6
    Protected VLAN : Reference Instance 1
    Hello Timer    : 1 sec(default is 1 sec)  Fail Timer : 6 sec(default is 6 sec)
    RRPP Ring      : 1
    Ring Level     : 0
    Node Mode      : Master
    Ring State     : CompleteIs Enabled     : Enable                             Is Active: Yes
    Primary port   : GigabitEthernet1/0/2               Port status: UP
    Secondary port : GigabitEthernet1/0/3               Port status: BLOCKED

    The major control VLAN is VLAN 5 and the sub-control VLAN is VLAN 6 in RRPP domain 1. VLANs mapping Instance1 are protected VLANs. Aggregation switch PE1 is the master node in Complete state. The primary interface is GE1/0/2 and the secondary interface is GE1/0/3.

  3. Configure VLAN 100 to transmit VRRP packets and VLAN 200 to transmit BFD packets.

    # Configure aggregation switch PE3.

    [PE3] vlan batch 100 200[PE3] interface gigabitethernet 1/0/2[PE3-GigabitEthernet1/0/2] stp disable //Disable STP.[PE3-GigabitEthernet1/0/2] port link-type trunk[PE3-GigabitEthernet1/0/2] port trunk allow-pass vlan 100 200[PE3-GigabitEthernet1/0/2] quit[PE3] interface gigabitethernet 1/0/3[PE3-GigabitEthernet1/0/3] stp disable //Disable STP.[PE3-GigabitEthernet1/0/3] port link-type trunk[PE3-GigabitEthernet1/0/3] port trunk allow-pass vlan 100 200[PE3-GigabitEthernet1/0/3] quit

    # Configure aggregation switch PE4.

    [PE4] vlan batch 100 200[PE4] interface gigabitethernet 1/0/2[PE4-GigabitEthernet1/0/2] stp disable //Disable STP.[PE4-GigabitEthernet1/0/2] port link-type trunk[PE4-GigabitEthernet1/0/2] port trunk allow-pass vlan 100 200[PE4-GigabitEthernet1/0/2] quit[PE4] interface gigabitethernet 1/0/3[PE4-GigabitEthernet1/0/3] stp disable //Disable STP.[PE4-GigabitEthernet1/0/3] port link-type trunk[PE4-GigabitEthernet1/0/3] port trunk allow-pass vlan 100 200[PE4-GigabitEthernet1/0/3] quit

  4. Configure a BFD session.

    1. Configure IP addresses for interfaces.

      # Configure an IP address for an interface on NPE1 and create a sub-interface for the interface.

      <HUAWEI> system-view[HUAWEI] sysname NPE1[NPE1] vlan 100[NPE1-vlan100] quit[NPE1] interface gigabitethernet 1/0/1[NPE1-GigabitEthernet1/0/1] undo shutdown[NPE1-GigabitEthernet1/0/1] ip address 10.2.1.1 24[NPE1-GigabitEthernet1/0/1] quit[NPE1] interface gigabitethernet 1/0/1.1[NPE1-GigabitEthernet1/0/1.1] undo shutdown[NPE1-GigabitEthernet1/0/1.1] vlan-type dot1q 100[NPE1-GigabitEthernet1/0/1.1] ip address 10.1.1.1 24[NPE1-GigabitEthernet1/0/1.1] quit

      # Configure an IP address for an interface on NPE2 and create a sub-interface for the interface.

      <HUAWEI> system-view[HUAWEI] sysname NPE2[NPE2] vlan 100[NPE2-vlan100] quit[NPE2] interface gigabitethernet 1/0/1[NPE2-GigabitEthernet1/0/1] undo shutdown[NPE2-GigabitEthernet1/0/1] ip address 10.2.1.2 24[NPE2-GigabitEthernet1/0/1] quit[NPE2] interface gigabitethernet 1/0/1.1[NPE2-GigabitEthernet1/0/1.1] undo shutdown[NPE2-GigabitEthernet1/0/1.1] vlan-type dot1q 100[NPE2-GigabitEthernet1/0/1.1] ip address 10.1.1.2 24[NPE2-GigabitEthernet1/0/1.1] quit
    2. Create a BFD session.

      # Enable BFD on NPE1 and configure a BFD session between NPE1 and NPE2.

      [NPE1] bfd[NPE1-bfd] quit[NPE1] bfd NPE2 bind peer-ip default-ip interface gigabitethernet 1/0/1 //Configure a static BFD session to monitor the link of the VRRP group.[NPE1-bfd-session-npe2] discriminator local 1[NPE1-bfd-session-npe2] discriminator remote 2[NPE1-bfd-session-npe2] commit[NPE1-bfd-session-npe2] quit

      # Enable BFD on NPE2 and configure a BFD session between NPE1 and NPE2.

      [NPE2] bfd[NPE2-bfd] quit[NPE2] bfd NPE1 bind peer-ip default-ip interface gigabitethernet 1/0/1 //Configure a static BFD session to monitor the link of the VRRP group.[NPE2-bfd-session-npe1] discriminator local 2[NPE2-bfd-session-npe1] discriminator remote 1[NPE2-bfd-session-npe1] commit[NPE2-bfd-session-npe1] quit

      # After completing the configuration, run the display bfd session all on NPE1 and NPE2. The command output shows that the BFD session is set up between NPE1 and NPE2 and its status is Up.

      Use the display on NPE1 as an example.

      [NPE1] display bfd session all--------------------------------------------------------------------------------
      Local Remote PeerIpAddr      State     Type        InterfaceName
      --------------------------------------------------------------------------------
      1     2      224.0.0.184     Up        S_IP_IF     GigabitEthernet1/0/1
      --------------------------------------------------------------------------------
           Total UP/DOWN Session Number : 1/0 
    3. Configure association between BFD status and sub-interface status.

      # Configure NPE1.

      [NPE1] bfd[NPE1-bfd] quit[NPE1] bfd NPE2[NPE1-bfd-session-npe2] process-interface-status sub-if[NPE1-bfd-session-npe2] commit[NPE1-bfd-session-npe2] quit

      # Configure NPE2.

      [NPE2] bfd[NPE2-bfd] quit[NPE2] bfd NPE1[NPE2-bfd-session-npe1] process-interface-status sub-if[NPE2-bfd-session-npe1] commit[NPE2-bfd-session-npe1] quit

      After completing the preceding configurations, run the display bfd session all verbose command on NPE1 and NPE2. Check that the Proc interface status field displays Enable (Sub-If).

      Use the display on NPE1 as an example.

      [NPE1] display bfd session all verbose--------------------------------------------------------------------------------
      Session MIndex : 257       (One Hop) State : Up        Name : npe2
      --------------------------------------------------------------------------------
        Local Discriminator    : 1                Remote Discriminator   : 2
        Session Detect Mode    : Asynchronous Mode Without Echo Function
        BFD Bind Type          : Interface(GigabitEthernet1/0/1)
        Bind Session Type      : Static
        Bind Peer IP Address   : 224.0.0.184
        NextHop Ip Address     : 224.0.0.184
        Bind Interface         : GigabitEthernet1/0/1
        FSM Board Id           : 0                TOS-EXP                : 7
        Min Tx Interval (ms)   : 1000             Min Rx Interval (ms)   : 1000
        Actual Tx Interval (ms): 1000             Actual Rx Interval (ms): 1000
        Local Detect Multi     : 3                Detect Interval (ms)   : 3000
        Echo Passive           : Disable          Acl Number             : -
        Destination Port       : 3784             TTL                    : 255
        Proc Interface Status  : Enable(Sub-If)   Process PST            : Disable
        WTR Interval (ms)      : -                Local Demand Mode      : Disable
        Active Multi           : 3
        Last Local Diagnostic  : No Diagnostic
        Bind Application       : IFNET
        Session TX TmrID       : 93               Session Detect TmrID   : 94
        Session Init TmrID     : -                Session WTR TmrID      : -
        Session Echo Tx TmrID  : -
        PDT Index              : FSM-0 | RCV-0 | IF-0 | TOKEN-0
        Session Description    : -
      --------------------------------------------------------------------------------
      
           Total UP/DOWN Session Number : 1/0 

  5. Configure VRRP.

    • # Configure an IP address for an interface on NPE1, create VRRP group 1, and set the VRRP priority of NPE1 to 120 so that NPE1 can function as the master.

      [NPE1] interface gigabitethernet 1/0/1.1[NPE1-GigabitEthernet1/0/1.1] vrrp vrid 1 virtual-ip 10.1.1.10[NPE1-GigabitEthernet1/0/1.1] vrrp vrid 1 priority 120 //The default priority of a device in a VRRP group is 100. Change the priority of the master to be higher than that of the backup.[NPE1-GigabitEthernet1/0/1.1] vrrp vrid 1 preempt-mode timer delay 10 //A device in a VRRP group uses immediate preemption by default. Change the preemption delay of the master to prevent service interruptions on an unstable network where devices in the VRRP group preempt to be the master.
    • # Configure an IP address for an interface on NPE2, create VRRP group 1, and allow NPE2 to use the default value so that NPE1 can function as the backup.

      [NPE2] interface gigabitethernet 1/0/1.1[NPE2-GigabitEthernet1/0/1.1] vrrp vrid 1 virtual-ip 10.1.1.10
    • # On NPE1, bind the VRRP group and the BFD session.

      [NPE1-GigabitEthernet1/0/1.1] vrrp vrid 1 track bfd-session 1 peer[NPE1-GigabitEthernet1/0/1.1] quit
    • # On NPE2, bind the VRRP group and the BFD session.

      [NPE2-GigabitEthernet1/0/1.1] vrrp vrid 1 track bfd-session 2 peer[NPE2-GigabitEthernet1/0/1.1] quit
    After completing the preceding configurations, run the display vrrp command on NPE1. Check that the status of NPE1 is Master. Run the display vrrp command on NPE2. Check that the status of NPE2 is Backup.
    [NPE1] display vrrpGigabitEthernet1/0/1.1 | Virtual Router 1
        State : Master
        Virtual IP : 10.1.1.10
        Master IP      : 10.1.1.1
        PriorityRun : 120
        PriorityConfig : 120
        MasterPriority : 120
        Preempt : YES   Delay Time : 10
        TimerRun : 1
        TimerConfig : 1
        Auth Type : NONE
        Virtual Mac :  0000-5e00-0101
        Check TTL : YES
        Config type : normal-vrrp
        Backup-forward : disabled
        Config track link-bfd down-number : 0
        Track BFD : 1  type: peer
        BFD-session state : UP
        Create time : 2013-12-29 14:46 UTC+07:00
        Last change time : 2013-12-29 14:46 UTC+07:00
    [NPE2] display vrrpGigabitEthernet1/0/1.1 | Virtual Router 1
        State : Backup
        Virtual IP : 10.1.1.10
        Master IP      : 10.1.1.2
        PriorityRun : 100
        PriorityConfig : 100
        MasterPriority : 120
        Preempt : YES   Delay Time : 0
        TimerRun : 1
        TimerConfig : 1
        Auth Type : NONE
        Virtual Mac :  0000-5e00-0101
        Check TTL : YES
        Config type : normal-vrrp
        Backup-forward : disabled
        Config track link-bfd down-number : 0
        Track BFD : 2  type: peer
        BFD-session state : UP
        Create time : 2013-12-29 14:46 UTC+07:00
        Last change time : 2013-12-29 14:46 UTC+07:00

  6. Configure Layer 2 forwarding on the user-side switch CE, access switch LSW1 to LSW3, and aggregation switch PE1 to PE4.

    The configuration details are not mentioned here. For details, see configuration files in this example.

  7. Verify the configuration.

    After the configuration is complete and the network topology becomes stable, perform the following operations to verify the configuration.

    • # Run the shutdown command on GE1/0/1 of LSW2 to simulate a fault, and then run the display sep interface command on LSW3 to check whether GE1/0/2 on LSW3 changes from the discarding state to the forwarding state.

      [LSW3] display sep interface gigabitethernet 1/0/2SEP segment 1
      ----------------------------------------------------------------
      Interface           Port Role     Neighbor Status     Port Status
      ----------------------------------------------------------------
      GE1/0/2             common        up                  forwarding 
    • Run the shutdown command on GE 1/0/1.1 on NPE1 to simulate an interface fault, and then run the display vrrp command on NPE2 to check whether the status of NPE2 changes from backup to master.

      [NPE2] display vrrpGigabitEthernet1/0/1.1 | Virtual Router 1
          State : Master
          Virtual IP : 10.1.1.10
          Master IP      : 10.1.1.2
          PriorityRun : 100
          PriorityConfig : 100
           MasterPriority : 100
          Preempt : YES   Delay Time : 0
          TimerRun : 1
          TimerConfig : 1
          Auth Type : NONE
          Virtual Mac :  0000-5e00-0101
          Check TTL : YES
          Config type : normal-vrrp
          Backup-forward : disabled
          Config track link-bfd down-number : 0
          Track BFD : 2  type: peer
          BFD-session state : DOWN  
          Create time : 2013-12-29 14:46 UTC+07:00
          Last change time : 2013-12-29 14:46 UTC+07:00

Configuration Files

  • LSW1 configuration file

    #
    sysname LSW1
    #
    vlan batch 10 100
    #
    sep segment 1
     control-vlan 10
     protected-instance 0 to 4094
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1
    #
    return
  • LSW2 configuration file

    #
    sysname LSW2
    #
    vlan batch 10 100
    #
    sep segment 1
     control-vlan 10
     protected-instance 0 to 4094
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1
    #
    return
  • LSW3 configuration file

    #
    sysname LSW3
    #
    vlan batch 10 100
    #
    sep segment 1
     control-vlan 10
     protected-instance 0 to 4094
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1
    #
    interface GigabitEthernet1/0/3
     port link-type trunk
     port trunk allow-pass vlan 100
    #
    return
  • PE1 configuration file

    #
    sysname PE1
    #
    vlan batch 5 to 6 10 100
    #
    rrpp enable
    #
    stp region-configuration
     instance 1 vlan 5 to 6 100
     active region-configuration
    #
    rrpp domain 1
     control-vlan 5
     protected-vlan reference-instance 1
     ring 1 node-mode master primary-port GigabitEthernet 1/0/2 secondary-port GigabitEthernet 1/0/3 level 0
     ring 1 enable
    #
    sep segment 1
     control-vlan 10
     block port middle
     tc-notify rrpp
     protected-instance 0 to 4094
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1 edge primary
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 5 to 6 100
     stp disable
    #
    interface GigabitEthernet1/0/3
     port link-type trunk
     port trunk allow-pass vlan 5 to 6 100
     stp disable
    #
    return
  • PE2 configuration file

    #
    sysname PE2
    #
    vlan batch 5 to 6 10 100
    #
    rrpp enable
    #
    stp region-configuration
     instance 1 vlan 5 to 6 100
     active region-configuration
    #
    rrpp domain 1
     control-vlan 5
     protected-vlan reference-instance 1
     ring 1 node-mode transit primary-port GigabitEthernet 1/0/2 secondary-port GigabitEthernet 1/0/3 level 0
     ring 1 enable
    #
    sep segment 1
     control-vlan 10
     tc-notify rrpp
     protected-instance 0 to 4094
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 10 100
     stp disable
     sep segment 1 edge secondary
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 5 to 6 100
     stp disable
    #
    interface GigabitEthernet1/0/3
     port link-type trunk
     port trunk allow-pass vlan 5 to 6 100
     stp disable
    #
    return
  • PE3 configuration file

    #
    sysname PE3
    #
    vlan batch 5 to 6 100 200
    #
    rrpp enable
    #
    stp region-configuration
     instance 1 vlan 5 to 6 100
     active region-configuration
    #
    rrpp domain 1
     control-vlan 5
     protected-vlan reference-instance 1
     ring 1 node-mode transit primary-port GigabitEthernet 1/0/1 secondary-port GigabitEthernet 1/0/2 level 0
     ring 1 enable
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 100
     stp disable
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 5 to 6 100 200
     stp disable
    #
    interface GigabitEthernet1/0/3
     port link-type trunk
     port trunk allow-pass 100 200
     stp disable
    #
    return
  • PE4 configuration file

    #
    sysname PE4
    #
    vlan batch 5 to 6 100 200
    #
    rrpp enable
    #
    stp region-configuration
     instance 1 vlan 5 to 6 100
     active region-configuration
    #
    rrpp domain 1
     control-vlan 5
     protected-vlan reference-instance 1
     ring 1 node-mode transit primary-port GigabitEthernet 1/0/1 secondary-port GigabitEthernet 1/0/2 level 0
     ring 1 enable
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 100
     stp disable
    #
    interface GigabitEthernet1/0/2
     port link-type trunk
     port trunk allow-pass vlan 5 to 6 100 200
     stp disable
    #
    interface GigabitEthernet1/0/3
     port link-type trunk
     port trunk allow-pass 100 200
     stp disable
    #
    return
  • NPE1 configuration file

    #
     sysname NPE1
    #
     vlan batch 100
    #
     bfd
    #
    interface GigabitEthernet1/0/1
     undo shutdown
     ip address 10.2.1.1 255.255.255.0
    #
    interface GigabitEthernet1/0/1.1
     vlan-type dot1q 100
     ip address 10.1.1.1 255.255.255.0
     vrrp vrid 1 virtual-ip 10.1.1.10
     vrrp vrid 1 priority 120
     vrrp vrid 1 preempt-mode timer delay 10
     vrrp vrid 1 track bfd-session 1 peer
    #
    bfd npe2 bind peer-ip default-ip interface GigabitEthernet1/0/1
     discriminator local 1
     discriminator remote 2
     process-interface-status sub-if
     commit
    #
    return
  • NPE2 configuration file

    #
     sysname NPE2
    #
     vlan batch 100
    #
     bfd
    #
    interface GigabitEthernet1/0/1
     undo shutdown
     ip address 10.2.1.2 255.255.255.0
    #
    interface GigabitEthernet1/0/1.1
     vlan-type dot1q 100
     ip address 10.1.1.2 255.255.255.0
     vrrp vrid 1 virtual-ip 10.1.1.10
     vrrp vrid 1 track bfd-session 2 peer
    #
    bfd npe1 bind peer-ip default-ip interface GigabitEthernet1/0/1
     discriminator local 2
     discriminator remote 1
     process-interface-status sub-if
     commit
    #
    return
  • CE configuration file

    #
    sysname CE1
    #
    vlan batch 100
    #
    interface GigabitEthernet1/0/1
     port link-type trunk
     port trunk allow-pass vlan 100
    #
    return

See more please click 

https://support.huawei.com/enterprise/en/doc/EDOC1000069520/9aadccc0/comprehensive-configuration-examples


  • x
  • convention:

Reply

Reply
You need to log in to reply to the post Login | Register

Notice Notice: To protect the legitimate rights and interests of you, the community, and third parties, do not release content that may bring legal risks to all parties, including but are not limited to the following:
  • Politically sensitive content
  • Content concerning pornography, gambling, and drug abuse
  • Content that may disclose or infringe upon others ' commercial secrets, intellectual properties, including trade marks, copyrights, and patents, and personal privacy
Do not share your account and password with others. All operations performed using your account will be regarded as your own actions and all consequences arising therefrom will be borne by you. For details, see " Privacy."
If the attachment button is not available, update the Adobe Flash Player to the latest version!
Login and enjoy all the member benefits

Login and enjoy all the member benefits

Login