How to configure the Eth-Trunk hash mode on S series switches

7

You can run the load-balance command to configure the Eth-Trunk hash mode on S series switches (except the S1700).

Other related questions:
How do I configure link aggregation in LACP mode on S series switches
Configure link aggregation in LACP mode on S series switches (except the S1700) as follows: # Create Eth-Trunk 1 on a switch and configure Eth-Trunk 1 to work in LACP mode. [HUAWEI] interface eth-trunk 1 [HUAWEI-Eth-Trunk1] mode lacp [HUAWEI-Eth-Trunk1] quit

How to configure load balancing for the Eth-Trunk on S series switches
S series switches (except the S1700) use a per-flow load balancing mechanism, which ensures that frames of the same data flow are forwarded on the same physical link, and different data flows are forwarded on different physical links. You can configure common load balancing mode to implement load balancing based on IP addresses or MAC addresses of packets. For L2, IP, and MPLS packets, you can also configure enhanced load balancing mode. Load balancing takes effect only for the outbound traffic. Therefore, load balancing modes can be different on the two ends of a link. 1. Commands for configuring common load balancing mode: [HUAWEI] interface Eth-Trunk 1 [HUAWEI-Eth-Trunk1] load-balance dst-mac 2. Commands for configuring enhanced load balancing mode: [HUAWEI] load-balance-profile a [HUAWEI-load-balance-profile-a] l2 field smac [HUAWEI-load-balance-profile-a] quit [HUAWEI] interface Eth-Trunk 1 [HUAWEI-Eth-Trunk1] load-balance enhanced profile a For configuration cases about common load balancing mode, see "Typical Ethernet Switching Configuration -Link Aggregation Configuration- Example for Configuring Link Aggregation in Manual Mode When Switches Are Directly Connected" in S1720&S2700&S3700&S5700&S6700&S7700&S9700 Typical Configuration Examples. The configuration cases of common load balancing are applicable to all S series switch models. The Sx700 series switch is used here as an example.

In which views can IPSG be enabled on S series switches
IPSG can be enabled on an S series switch (except the S1700) in an interface or a VLAN view. Interface views include the Ethernet interface view, GE interface view, 40GE interface view, XGE interface view, 100GE interface view, Eth-Trunk interface view, and port group view. Example 1: Enable IPSG in the GE0/0/1 view. [HUAWEI] interface gigabitethernet 0/0/1 [HUAWEI-GigabitEthernet0/0/1] ip source check user-bind enable Example 2: Enable IPSG in the VLAN 100 view. [HUAWEI] vlan 100 [HUAWEI-vlan100] ip source check user-bind enable

How load balancing is implemented on S series switches when link aggregation is configured
For S series switches (except the S1700), there are two load balancing modes: per-packet load balancing and per-flow load balancing. 1. Per-packet load balancing mode When there are multiple physical links between the two devices of the Eth-Trunk, the first data frame of a data flow is transmitted on one physical link, and the second data frame is transmitted on another physical link. In this case, the second data frame may arrive at the peer device earlier than the first data frame. As a result, packet mis-sequencing occurs. 2. Per-flow load balancing mode This mechanism uses the hash algorithm to calculate the address in a data frame and generates a hash key value. Then the system searches for the outbound interface in the Eth-Trunk forwarding table based on the generated hash key value. Each MAC or IP address corresponds to a hash key value, so the system uses different outbound interfaces to forward data. This mechanism ensures that frames of the same data flow are forwarded on the same physical link and implements flow-based load balancing. Per-flow load balancing ensures the correct sequence of data transmission, but cannot ensure the bandwidth usage. Notes: Currently, S series switches support only per-flow load balancing mode, including the following: 1. Load balancing based on the source MAC address of packets; 2. Load balancing based on the destination MAC address of packets; 3. Load balancing based on the source IP address of packets; 4. Load balancing based on the destination IP address of packets; 5. Load balancing based on the source and destination MAC addresses of packets; 6. Load balancing based on the source and destination IP addresses of packets; 7. Enhanced load balancing for L2, IPv4, IPv6, and MPLS packets based on the VLAN ID and source physical interface number. When you configure load balancing modes, follow these guidelines: The load balancing mode only takes effect on the outbound interface of traffic. If load is unevenly distributed on the inbound interfaces, change the load balancing mode on the uplink outbound interfaces. Configure load balancing to ensure data flow is transmitted on all active links instead of only one link, preventing traffic congestion and ensuring normal service operation. For example, if data packets have only one destination MAC address and IP address, you are advised to configure load balancing based on the source MAC address and IP address. If you implement load balancing based on the destination MAC address and IP address, the data flow may be transmitted on only one link, causing traffic congestion.

If you have more questions, you can seek help from following ways:
To iKnow To Live Chat
Scroll to top